Due November 27 Problem 1 If $latex f_n$ is a sequence of measurable functions, then $latex \{x:\lim f_n \text{ exists} \}$ is a measurable set. Problem 2 If $latex f:\R\to\R$ is monotone, then is Borel measurable. Problem 3 If $latex f_n\in L^+$ decreases pointwise to $latex f$, and $latex \int f_1 < \infty$, then $latex \int f = \lim \int f_n$. Problem 4 Let $latex f_n\in L^1$ such that $latex f_n\rightrightarrows f$. If $latex \mu(X)<\infty$, then $latex f\in L^1$ and $latex \int f_n\to\int f$. If $latex \mu(X)=\infty$, then the conclusions of (1.) might fail. Problem 5 If $latex 1\le p<r\le \infty$, $latex L^p\cap L^r$ is a Banach space with norm $latex ||f||=||f||_p + ||f||_r$. If $latex 1\le p<q<r\le\infty$, the inclusion map $latex L^p\cap L^r\to L^q$ is continuous.