Due October 16
Problem 1
If $latex X$ is discrete, then $latex (\mathcal C_X,d_H)$ is discrete.
Problem 2
Let $latex A\subset X$ be a finite set of isolated points in $latex X$. Then $latex A$ is isolated in $latex \mathcal C_X$.
Problem 3
Let $latex A_n$ be a decreasing sequence of nonempty compact sets in $latex X$. Then
$latex \displaystyle \lim A_n = \bigcap_{n\ge 1} A_n$
in $latex \mathcal C_H$.
Problem 4
Let $latex f_1, \ldots, f_N:X\to X$ be contractions in the complete metric space $latex X$, and $latex K$ the self-similar set with respect to the $latex f_i$. If $latex A\subset X$ is compact and
$latex A\subset f_1(A)\cup\ldots\cup f_N(A)$,
then $latex A\subset K$.
Problem 5
Under the same hypothesis of the previous problem, if $latex B\subset X$ is nonempty and
$latex B\supset f_1(B)\cup\ldots\cup f_N(B)$,
then $latex \bar B \supset K$.
Comentarios
Publicar un comentario