Problem 1 Identify $latex \R^2$ with $latex \C$. The 2-dimensional zonal harmonics are then given by $latex Z_0^{e^{i\theta}}(e^{i\varphi}) = \dfrac{1}{2\pi},\qquad Z_k^{i\theta}(e^{i\varphi}) = \dfrac{1}{\pi}\cos k(\varphi - \theta),\quad k>0.$ Verify explicitly the properties of zonal harmonics seen in class. The polynomial $latex F_k$ given by $latex F_k(x\cdot y) = Z_k^x(y)$ is equal to $latex \dfrac{1}{\pi}T_k$ for $latex k>0$, where $latex T_k$ is the Chebyshev polynomial given by $latex R_k(\cos\theta) = \cos k\theta$. Problem 2 The Gegenbauer polynomials $latex C_k^\lambda$ are given by the generating function $latex \displaystyle \sum_{k=0}^\infty C_k^\lambda(t) r^k = (1 - 2rt + r^2)^{-\lambda}.$ The polynomials $latex F_k$, for $latex n\ge 3$, are given by $latex \displaystyle F_k(t) = \frac{n-2+2k}{\omega_n (n-2)}C_k^{(n-2)/2}(t).$ ( Hint: Apply the operator $latex D=1 + \dfrac{r}{\lambda}\dfrac{d}{dr}$ to the generating function above, and consider the expansio...