Análisis de Fourier y operadores de multiplicación
Sea $latex m\in L^\infty(\mathbb R^d)$, $latex m_R(\xi) = m(\xi/R)$ para $latex R>0$, y considera el operador de multiplicación dado por $latex \widehat{T_Rf}(\xi) = m_R(\xi)\hat f(\xi)$. Si $latex ||T_1f||_{L^p} \le M ||f||_{L^p}$, entonces $latex ||T_Rf||_{L^p} \le M||f||_{L^p}$ para todo $latex R>0$.
Sean $latex T_1,T_2$ dos triángulos contiguos como en la figura, cada uno de base b y altura h, y sea $latex \tilde T_2$ el triángulo que resulta de trasladar a la izquierda el triángulo $latex T_2$ una distancia $latex 2(1-\alpha)b$, para $latex 1/2 < \alpha < 1$. Entonces $latex |T_1\cup\tilde T_2| = (\alpha^2 + 2(1-\alpha)^2)|T_1\cup T_2|$.
$latex f(\alpha) = \alpha^2 -2 (1-\alpha)^2 < 1$ para todo $latex \alpha\in(1/2,1)$, y tiene mínimo 2/3.
Comentarios
Publicar un comentario