Ir al contenido principal

## Due March 15

### Problem 1

1. A polynomial $p\in\mathcal P_k$ if and only if $\displaystyle \sum_{j=1}^d x_j \frac{\partial p}{\partial x_j} = k p.$
2. In fact, if $f$ is a differentiable function on $\mathbb R^d$ that is homogeneous of degree $\kappa\in\mathbb R$, i. e., $f(tx) = t^\kappa f(x)$ for any $t>0$ and $x\in\mathbb R^d$, then $\displaystyle \sum_{j=1}^d x_j \frac{\partial f}{\partial x_j} = \kappa f.$

### Problem 2

If $p\in\mathcal H_k$, then $\dfrac{p(x)}{|x|^{2k+d-2}}$ is harmonic in $\mathbb R^d\setminus\{0\}.$

### Problem 3

If $R$ is any rotation on $\mathbb R^d$, then $Z_k^{R\zeta}(R\xi) = Z_k^\zeta(\xi).$

### Problem 4

1. Use Parseval's identity to verify $||Z_k^\zeta||^2 = d_k/\omega_d$.
2. Use Cauchy-Schwarz inequality to verify $||Z_k^\zeta||_u = d_k/\omega_d$.

### Problem 5

The Gegenbauer polynomials $C_k^{\alpha}(t)$ are defined by the generating function
$\displaystyle \sum_{k=0}^\infty C_k^{\alpha}(t)r^k = \frac{1}{(1 - 2rt + r^2)^\alpha}.$
1. The polynomials $C_k^\alpha(t)$ satisfy the recurrence relations $C_0^\alpha(t) = 1$, $C_1^\alpha(t) = 2\alpha t$, and
$k C_k^\alpha(t) = 2t(k + \alpha - 1) C_{k-1}^\alpha(t) - (k + 2\alpha - 2) C_{k-2}^\alpha(t).$
2. The polynomials $F_k(t)$ are given by $\displaystyle F_k(t) = \frac{d-2+2k}{(d-2)\omega_d} C_k^{(d-2)/2}(t).$