Ir al contenido principal

## Due March 8

### Problem 1

1. If $\sum a_n$ converges to $s$, then it is Abel-summable to $s$.
2. If $\sum a_n$ is Cesàro-summable to $s$, then is it Abel-summable to $s$.

### Problem 2 (Tauber's theorem)

If $\sum a_n$ is Abel-summable to $s$ and $na_n \to 0$, then $\sum a_n$ coverges to $s$.

### Problem 3

Suppose $f$ has left and right limits at $\theta_0$, say
$\displaystyle \lim_{\theta\to\theta_0^-}f(\theta) = f(\theta_0-) \qquad \text{and}\qquad \lim_{\theta\to\theta_0^+}f(\theta) = f(\theta_0+),$
then
$\displaystyle \sigma_N(\theta_0) \to \frac{f(\theta_0-) + f(\theta_0+)}{2},$
where $\sigma_N(\theta)$ are the Cesàro sums of its Fourier series.

### Problem 4 (Bernstein's theorem)

If $f\in C^\alpha(\mathbb S)$, for some $\alpha > 1/2$, then $\sum |\hat{f}(n)| < \infty$.
$f\in C^\alpha(\mathbb S)$ means that $f$ is Holder continuous with exponent $\alpha$, that it, there exists $M>0$ such that
$|f(x) - f(y)| \le M|x-y|$.
1. For $h>0$, $\displaystyle \frac{1}{2\pi}\int_0^{2\pi} |f(x+h) - f(x-h)|^2 dx = \sum_{n=-\infty}^\infty 4 |\sin nh|^2 |\hat f (n)|^2$.
2. For $h>0$, $\displaystyle \sum_{n=-\infty}^\infty 4 |\sin nh|^2 |\hat f (n)|^2 \le 2^{2\alpha}M^2 h^{2\alpha}$.
3. For $p\in\mathbb Z_+$, $\displaystyle \sum_{2^{p-1} < |n| \le 2^p} |\hat f (n)|^2 \le \frac{M^2 \pi^{2\alpha}}{2^{2\alpha p}}$.
4. For $p\in\mathbb Z_+$, $\displaystyle \sum_{2^{p-1} < |n| \le 2^p} |\hat f (n)| \le \frac{M \pi^\alpha}{2^{(\alpha - 1/2) p}}$.
5. Conclude $\sum_{n=-\infty}^\infty |\hat{f}(n)| < \infty$.
The Dirichlet kernel $\displaystyle D_N(\theta) = \sum_{n=-N}^N e^{in\theta}$ is given explicitly by
$\displaystyle D_N(\theta) = \frac{\sin(N+1/2)\theta}{\sin \theta/2}.$