Due date: September 8 Problem 1 Let $latex L^1([a,b])$ be the space of real valued continuous functions with the $latex d_1$ metric. The polynomials are dense in $latex L^1([a,b])$. Is $latex L^1([a,b])$ separable? Problem 2 Let $latex f:[a,b]\to\R$ be a continuous function such that $latex \displaystyle \int_a^b f(x) x^n dx = 0$ for all $latex n=0,1,2,\ldots$. Then $latex f(x)=0$ for all $latex x\in[a,b].$ Problem 3 Let $latex \mathbb S^1$ be the circle and $latex \mathscr A\subset C(\mathbb S^1)$ the algebra of trigonometric polynomials. Then $latex \mathscr A$ separates points. Problem 4 If $latex f,g\in C(X)$, then $latex \max(f,g), \min(f,g)\in C(X)$ . Problem 5 If $latex X,Y$ are compact metric spaces, then the tensor space $latex \displaystyle C(X)\otimes C(Y) = \{ (x,y)\mapsto \sum_{k=1}^n f_k(x)g_k(y): f_k\in C(X), g_k\in C(Y), n\ge1\}$ is dense in $latex C(X\times Y)$. Note: The product space $latex X\times Y$ has the metric $latex d_{X\times Y} \big( (x_1,y_1), (x_2,y