Problem 1
Find the Green's function for the Laplace equation in the upper half-space $latex \R^{n+1}_+ = \{x_{n+1}>0\}$ and then derive a formal integral representation for a solution of the Dirichlet problem
$latex \begin{cases} \Delta u = 0 &\text{in } \R^{n+1}_+\\ u = \phi & \text{on }\{x_{n+1}=0\}.\end{cases}$
Problem 2
Use the Poisson integration formula to prove the Harnack inequality
$latex \displaystyle\Big(\frac{R}{R+r}\Big)^{n-2} \frac{R-r}{R+r} u(x_0) \le u(x) \le \Big(\frac{R}{R-r}\Big)^{n-2} \frac{R+r}{R-r}u(x_0),$
for a harmonic function u in $latex B_R(x_0)\subset\R^n$, where $latex r=|x-x_0|<R$.
Problem 3
Use Problem 2 to give another proof of Liuville's theorem: a harmonic function in $latex \R^n$ bounded from above, or from below, is constant.
Comentarios
Publicar un comentario