Due May 8th
Problem 1
If $latex P(z)$ is a polynomial, then there exists $latex z_0$ such that $latex |z_0|=1$ and $latex |P(z_0) - \dfrac{1}{z_0}| \ge 1$.
Problem 2
There exists a sequence $latex P_n(z)$ of polynomials such that $latex P_n(0) =1$ for all $latex n$ and $latex P_n(z)\to 0$ for all $latex z\in\mathbb C$, $latex z\not=0$.
Problem 3
Assume Runge's Theorem and prove the following theorem: Let $latex V\subset\mathbb C$ open and $latex \Gamma$ a cycle in $latex V$. If $latex \displaystyle \int_\Gamma f(z) dz = 0$ for all $latex f\in H(V)$ of the form $latex f(z) = 1/(z-a)$, then $latex \displaystyle \int_\Gamma f(z) dz = 0$ for all $latex f\in H(V)$.
Problem 4
Let $latex V\subset\mathbb C$ be bounded, connected and open. There exists $latex f\in H(V)$ which cannot be extended to a function holomorphic in a strictly larger open set.
Should it be z_0 in the inequality in problem 1?
ResponderBorrarIndeed
BorrarAny hint on how to take the Kn?
ResponderBorrarWhich Kn?
BorrarThe book says that we can consider an increasing sequence of compact subsets Kn, whose union is C\{0}
BorrarAlgún hint extra para el 2?
ResponderBorrarhttps://i.blogs.es/bcef7b/070513_pacman/450_1000.jpg
Borrarotra cosa, en el 3 creo que tenemos que asumir que gamma tiene índice 0 alrededor de cualquier punto en el complemento de V
BorrarNo, la hipótesis del problema se encarga de no necesitar eso.
Borrar