Processing math: 100%
Ir al contenido principal

Homework 12: Complex Analysis

Due May 8th

Problem 1

If P(z) is a polynomial, then there exists z0 such that |z0|=1 and |P(z0)1z0|1.

Problem 2

There exists a sequence Pn(z) of polynomials such that Pn(0)=1 for all n and Pn(z)0 for all zC, z0.

Problem 3

Assume Runge's Theorem and prove the following theorem: Let VC open and Γ a cycle in V. If  Γf(z)dz=0 for all fH(V) of the form f(z)=1/(za), then Γf(z)dz=0 for all fH(V).

Problem 4

Let VC be bounded, connected and open. There exists fH(V) which cannot be extended to a function holomorphic in a strictly larger open set.

Comentarios

  1. Should it be z_0 in the inequality in problem 1?

    ResponderBorrar
  2. Respuestas
    1. The book says that we can consider an increasing sequence of compact subsets Kn, whose union is C\{0}

      Borrar
  3. Algún hint extra para el 2?

    ResponderBorrar
    Respuestas
    1. https://i.blogs.es/bcef7b/070513_pacman/450_1000.jpg

      Borrar
    2. otra cosa, en el 3 creo que tenemos que asumir que gamma tiene índice 0 alrededor de cualquier punto en el complemento de V

      Borrar
    3. No, la hipótesis del problema se encarga de no necesitar eso.

      Borrar

Publicar un comentario