Ir al contenido principal

Homework 12: Complex Analysis

Due May 8th

Problem 1

If $latex P(z)$ is a polynomial, then there exists $latex z_0$ such that $latex |z_0|=1$ and $latex |P(z_0) - \dfrac{1}{z_0}| \ge 1$.

Problem 2

There exists a sequence $latex P_n(z)$ of polynomials such that $latex P_n(0) =1$ for all $latex n$ and $latex P_n(z)\to 0$ for all $latex z\in\mathbb C$, $latex z\not=0$.

Problem 3

Assume Runge's Theorem and prove the following theorem: Let $latex V\subset\mathbb C$ open and $latex \Gamma$ a cycle in $latex V$. If  $latex \displaystyle \int_\Gamma f(z) dz = 0$ for all $latex f\in H(V)$ of the form $latex f(z) = 1/(z-a)$, then $latex \displaystyle \int_\Gamma f(z) dz = 0$ for all $latex f\in H(V)$.

Problem 4

Let $latex V\subset\mathbb C$ be bounded, connected and open. There exists $latex f\in H(V)$ which cannot be extended to a function holomorphic in a strictly larger open set.

Comentarios

  1. Should it be z_0 in the inequality in problem 1?

    ResponderBorrar
  2. Respuestas
    1. The book says that we can consider an increasing sequence of compact subsets Kn, whose union is C\{0}

      Borrar
  3. Respuestas
    1. https://i.blogs.es/bcef7b/070513_pacman/450_1000.jpg

      Borrar
    2. otra cosa, en el 3 creo que tenemos que asumir que gamma tiene índice 0 alrededor de cualquier punto en el complemento de V

      Borrar
    3. No, la hipótesis del problema se encarga de no necesitar eso.

      Borrar

Publicar un comentario