Ir al contenido principal

Homework 3: Complex Analysis

Due February 21st

Problem 1

  1. Verify explicitly that $latex \text{Ind}(\partial D(z_0,r),z_0) = 1$ for all $latex z_0\in\mathbb C$ and $latex r>0$.
  2. For $latex z_0\in\mathbb C$ and $latex r>0$,
    $latex \text{Ind}(\partial D(z_0,r),z) = \begin{cases} 1 & |z-z_0| < r\\ 0 & |z-z_0| > r. \end{cases}$

Problem 2

  1. If $latex f,g$ are holomorphic near $latex z_0$ and $latex f$ has a simple zero at $latex z_0$, find an expression for the residue of $latex g/f$ at $latex z_0$.
  2. If $latex f$ has a simple pole at $latex z_0$ and $latex g$ is holomorphic near $latex z_0$, then
    $latex \text{Res}(fg,z_0) = g(z_0)\text{Res}(f,z_0)$.
  3. If $latex f$ is holomorphic near $latex z_0$ and $latex g(z) = f(z)/(z-z_0)^n$, then
    $latex \text{Res}(g,z_0) = \dfrac{f^{(n-1)}(z_0)}{(n-1)!}$.

Problem 3

  1. Use the residue theorem to show that $latex \displaystyle \int_{-\infty}^\infty \frac{dx}{1+x^2} = \pi$. (Hint: For $latex R>0$, consider the upper semicircle $latex \gamma$ with radius $latex R$ and diameter over the real line, calculate $latex \int_\gamma f(z)dz$ and let $latex R\to\infty$.)
  2. Let $latex P,Q$ polynomials over $latex \mathbb R$, $latex \text{degree}(Q)\ge\text{degree}(P)+2$, and suppose $latex Q$ does not have real roots. Then $latex \displaystyle \int_{-\infty}^\infty \frac{P(x)}{Q(x)} dx$ is $latex 2\pi i$ times the sum of the residues of $latex P(z)/Q(z)$ in the upper half-plane.

Problem 4

  1. Find $latex \displaystyle \lim_{\epsilon\to0^+,R\to\infty} \Big( \int_{-R}^{-\epsilon} + \int_\epsilon^R\Big) \frac{e^{it}}{t} dt$. (Hint: Consider the same curve $latex \gamma$ as in the previous exercise, with a small dent of radius $latex \epsilon$ around $latex 0$.)
  2. Use the previous result to calculate the integral $latex \displaystyle \lim_{R\to\infty} \int_{-R}^R \frac{\sin t}{t} dt$.

Problem 5

Suppose $latex P(z)$ is polynomial over $latex \mathbb C$ of degree $latex n\ge2$ with distinct roots $latex z_1, z_2, \ldots, z_n$. Then
$latex \displaystyle \sum_{j=1}^n \frac{1}{P'(z_j)} = 0$.
(Explain first why each $latex P'(z_j)\not=0$.)


Publicar un comentario