Due February 21st
Problem 1
- Verify explicitly that Ind(∂D(z0,r),z0)=1 for all z0∈C and r>0.
- For z0∈C and r>0,Ind(∂D(z0,r),z)={1|z−z0|<r0|z−z0|>r.
Problem 2
- If f,g are holomorphic near z0 and f has a simple zero at z0, find an expression for the residue of g/f at z0.
- If f has a simple pole at z0 and g is holomorphic near z0, thenRes(fg,z0)=g(z0)Res(f,z0).
- If f is holomorphic near z0 and g(z)=f(z)/(z−z0)n, thenRes(g,z0)=f(n−1)(z0)(n−1)!.
Problem 3
- Use the residue theorem to show that ∫∞−∞dx1+x2=π. (Hint: For R>0, consider the upper semicircle γ with radius R and diameter over the real line, calculate ∫γf(z)dz and let R→∞.)
- Let P,Q polynomials over R, degree(Q)≥degree(P)+2, and suppose Q does not have real roots. Then ∫∞−∞P(x)Q(x)dx is 2πi times the sum of the residues of P(z)/Q(z) in the upper half-plane.
Problem 4
- Find limϵ→0+,R→∞(∫−ϵ−R+∫Rϵ)eittdt. (Hint: Consider the same curve γ as in the previous exercise, with a small dent of radius ϵ around 0.)
- Use the previous result to calculate the integral limR→∞∫R−Rsinttdt.
Problem 5
Suppose P(z) is polynomial over C of degree n≥2 with distinct roots z1,z2,…,zn. Then
n∑j=11P′(zj)=0.
(Explain first why each P′(zj)≠0.)
En el problema 2.1 tenemos que asumir que g(Zo) no es cero?
ResponderBorrarNo, g(z0) puede ser cero.
BorrarGracias. En el problema 4.2 es tomando el límite?
BorrarSí, ya está corregido.
Borrar