Ir al contenido principal

## Due April 12

### Problem 1

For any $\xi\in\mathbb R$,
$\displaystyle \lim_{N\to\infty} \int_{-N}^N e^{-\pi (x+i\xi)^2}dx = \lim_{N\to\infty} \int_{-N}^N e^{-\pi x^2}dx = 1.$
(Hint: Consider the contour integral $\int_\gamma e^{-\pi z^2} dz = 0$ over the rectangle $\gamma$ with vertices $N, N+i\xi, -N+i\xi$ and $-N$.)

### Problem 2

Let $u>0$. Then
1. $\displaystyle \frac{1}{\pi} \int_{-\infty}^\infty \frac{e^{-2\pi iuv}}{1 + v^2} dv = \frac{1}{\sqrt\pi} \int_0^\infty \frac{1}{\sqrt s} e^{-s} e^{-\pi^2 u^2/s} ds$;
2. $\displaystyle \frac{1}{\pi} \int_{-\infty}^\infty \frac{e^{-2\pi iuv}}{1 + v^2} dv = e^{-2\pi u}$.

### Problem 3

Prove the Riemann-Lebesgue Lemma: If $f\in L^1(\mathbb R^d)$, then $\hat f(\xi) \to 0$ as $|\xi|\to\infty$.

### Problem 4

If $\Phi(x) = e^{-\pi |x|^2}$, the collection $\{\Phi_t(x)\}_{t>0}$ if its dilations is a collection of better kernels.

### Problem 5

If $f,g\in L^1(\mathbb R^d)$, then $\widehat{f*g}(\xi) = \hat f(\xi) \hat g(\xi)$. (Hint: Apply Fubini's theorem to $F(x,y) = f(x-y) g(y) e^{-2\pi i x\cdot\xi}$ on $\mathbb R^d\times\mathbb R^d$.)