Due May 3 Problem 1 Let $latex \gamma$ be the lower semicircle of radius $latex N$ around the origin, and $latex \xi > 0.$ Then $latex \displaystyle \int_\gamma f(z) dz = 2\pi i\text{Res}_{z=-it} f(z) = i e^{-2\pi t\xi},$ where $latex f(z)$ is the function defined by $latex f(z) = \dfrac{1}{\pi} \dfrac{z}{z^2+t^2} e^{-2\pi iz\xi}.$ Problem 2 If $latex f\in L^1(\mathbb R)$ and diferentiable at $latex x\in\mathbb R$, then the limit $latex \displaystyle \lim_{t\to 0} \int_{|y|\ge t} \frac{f(x-y)}{y} dy$ exists. ( Hint: Use the identity, for any $latex \delta_n>0$, $latex \displaystyle \int_{t\le|y|<\delta_n} \frac{f(x-y)}{y} dy = \int_{t\le|y|<\delta_n} \frac{f(x-y) - f(x)}{y} dy + \int_{t\le|y|<\delta_n} \frac{f(x)}{y} dy,$ and take $latex \delta_n\to 0$.) Problem 3 If $latex f_n, g_n$ are sequences in $latex C_c^\infty(\mathbb R)$ that converge in $latex L^1(\mathbb R)$ to $latex f$, then $latex Hf_n$ and $latex Hg_n$ converge in measu...