Loading [MathJax]/jax/output/CommonHTML/jax.js
Ir al contenido principal

Problem set 4, Harmonic Analysis

Due March 1

Problem 1

If the sequences an and bn are bounded, then 
u(r,θ)=n=0rn(ancos(nθ)+bnsin(nθ))
is harmonic in D.

Problem 2

For m,nZ,
2π0eimθeinθdθ={2πm=n0mn.

Problem 3

The series
n=1(1)nnsinnθ
converges for each θ.

Problem 4

If f is Riemann integrable and periodic with period T, then
a+Taf(x)dx=T0f(x)dx
for any aR.

Problem 5

Let g be the periodic function given in [π,π) by g(θ)=|θ|.
  1. For each nZ,
    ˆg(n)={π2n=00even n02πn2odd n.
  2. The Fourier series of g is given by
    π24πk=1cos(2k+1)x(2k+1)2.

Comentarios