Due March 1
Problem 1
If the sequences an and bn are bounded, then
u(r,θ)=∞∑n=0rn(ancos(nθ)+bnsin(nθ))
is harmonic in D.
Problem 2
For m,n∈Z,
∫2π0eimθe−inθdθ={2πm=n0m≠n.
Problem 3
The series
∞∑n=1(−1)nnsinnθ
converges for each θ.
Problem 4
If f is Riemann integrable and periodic with period T, then
∫a+Taf(x)dx=∫T0f(x)dx
for any a∈R.
Problem 5
Let g be the periodic function given in [−π,π) by g(θ)=|θ|.
- For each n∈Z,ˆg(n)={π2n=00even n≠0−2πn2odd n.
- The Fourier series of g is given byπ2−4π∞∑k=1cos(2k+1)x(2k+1)2.
Comentarios
Publicar un comentario