Due March 1 Problem 1 If the sequences $latex a_n$ and $latex b_n$ are bounded, then $latex \displaystyle u(r,\theta) = \sum_{n=0}^\infty r^n (a_n \cos(n\theta) + b_n \sin(n\theta))$ is harmonic in $latex \mathbb D$. Problem 2 For $latex m,n\in\mathbb Z$, $latex \displaystyle \int_0^{2\pi} e^{im\theta}e^{-in\theta} d\theta = \begin{cases} 2\pi & m=n\\0 & m\not=n.\end{cases}$ Problem 3 The series $latex \displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n} \sin n\theta$ converges for each $latex \theta$. Problem 4 If $latex f$ is Riemann integrable and periodic with period $latex T$, then $latex \displaystyle \int_a^{a+T} f(x) dx = \int_0^T f(x) dx$ for any $latex a\in\mathbb R$. Problem 5 Let $latex g$ be the periodic function given in $latex [-\pi,\pi)$ by $latex g(\theta) = |\theta|$. For each $latex n\in\mathbb Z$, $latex \displaystyle \hat g(n) = \begin{cases}\dfrac{\pi}{2} & n=0\\0 & \text{even } n\not=0\\- \dfra...