Ir al contenido principal

Homework 7, Real Analysis

Due October 5

Problem 1

Let $latex L^1([a,b])$ be the space of real valued continuous functions with the $latex d_1$ metric.

  1. The polynomials are dense in $latex L^1([a,b])$.

  2. Is $latex L^1([a,b])$ separable?

Problem 2

Let $latex f:[a,b]\to\R$ be a continuous function such that

$latex \displaystyle \int_a^b f(x) x^n dx = 0$

for all $latex n=0,1,2,\ldots$. Then $latex f(x)=0$ for all $latex x\in[a,b].$

Problem 3

If $latex X,Y$ are compact metric spaces, then the tensor space

$latex \displaystyle C(X)\otimes C(Y) = \{ (x,y)\mapsto \sum_{k=1}^n f_k(x)g_k(y): f_k\in C(X), g_k\in C(Y), n\ge1\}$

is dense in $latex C(X\times Y)$.

Note: The product space $latex X\times Y$ has the metric

$latex d_{X\times Y} \big( (x_1,y_1), (x_2,y_2) \big) = d_X(x_1,x_2) + d_Y(y_1,y_2).$

Problem 4

State whether the following are true:

  1. $latex \overline{A\cup B} \subset \overline{A}\cup \overline{B}$;

  2. $latex \overline{A\cup B} \supset \overline{A}\cup \overline{B}$;

  3. $latex \overline{A\cap B} \subset \overline{A}\cap \overline{B}$; and

  4. $latex \overline{A\cap B} \supset \overline{A}\cap \overline{B}$.