Due March 2
Problem 1
Let f be integrable on $latex [0,b]$ and define, on $latex [0,b]$,
$latex \displaystyle g(x) = \int_x^b \frac{f(t)}{t} dt.$
Then g is integrable on $latex [a,b]$ and $latex \displaystyle \int_0^b g(x) dx = \int_0^b f(t) dt$.
Problem 2
- Let $latex F\subset\R$ be a closed set such that $latex m(\R\setminus F) <\infty$, and let $latex \delta(x) = d(x,F)$ be the distance from x to F. Then $latex \delta(x)$ is a Lipschitz function.
- Let $latex \displaystyle I(x) = \int_\R \frac{\delta(x)}{|x-y|^2} dy.$ Then $latex I(x) = \infty$ for any $latex x\in\R\setminus F$, and $latex I(x) < \infty$ for a.e $latex x\in F$.
Problem 3
There exists $latex f\in L^1(\R^d)$ and a sequence $latex f_n\in L^1(\R^d)$ such that $latex f_n\to f$ in $latex L^1$, but $latex f_n(x) \not\to f(x)$ for every x.
Problem 4
Consider the function defined on $latex \R$ by
$latex f(x) = \begin{cases} x^{-1/2} & 0 < x < 1,\\0 & \text{otherwise.} \end{cases}$
For a fixed enumaeration $latex \{r_n\} = \Q$, let
$latex \displaystyle F(x) = \sum_{n=1}^\infty 2^{-n} f(x - r_n)$.
- F is integrable, and thus the series for F converges for a.e. x.
- F is unbounded on every interval.
- If g = F a.e., then g is unbounded in any interval.
Comentarios
Publicar un comentario