Due date: October 27
Problem 1
Let $latex x_n\to x, y_n\to y$ be convergent sequences in the normed space $latex (X,||\cdot||)$ over $latex \K$. Then
- $latex x_n + y_n \to x + y$;
- $latex \lambda_n x_n \to \mu x$ for all sequences $latex \lambda_n\to\lambda$ in $latex \K$.
Problem 2
Let $latex (X,||\cdot||)$ be a normed space over $latex \K$.
- $latex \lim ||x_n-x|| = 0$ implies $latex \lim||x_n||=||x||$.
- For $latex x,y\in X,\lambda\in\R$, find $latex \lim \big( ||(n+\lambda)x + y|| - ||nx+y||\big)$.
Problem 3
Let X be a Banach space, $latex x_n\in X$, $latex ||x_n||=1$ for all n, and $latex \lambda_n\in\K$. Discuss the validity of the statement: $latex \sum \lambda_n x_n$ converges if and only if $latex \sum |\lambda_n|<\infty$.
Problem 4
Let $latex x_n$ be a sequence in a Banach space X such that, for all $latex \e>0$, there exists a convergent sequence $latex y_n$ such that $latex ||x_n - y_n||<\e$ for all n.
- $latex x_n$ converges.
- Give an example where the previous statement is false if X is not complete.
Problem 5
The normed space $latex (X,||\cdot||)$ is a Banach space if and only if the unit sphere
$latex \mathbb S = \{ x\in X: ||x||=1\}$
equipped with the metric $latex d(x,y)=||x-y||$ is complete.
Comentarios
Publicar un comentario