Due August 28th Problem 1 For $latex n\in\Z_+$, let $latex \mathcal P_n$ the space of polynomials of degree at most $latex n$, seen as functions on $latex [0,1]$. If $latex f_n$ converges uniformly to $latex f$ on $latex [0,1]$, then $latex f\in\mathcal P_n$. Consider the sequence $latex f_n(x) = 1 + \dfrac{1}{2}x + \dfrac{1}{4}x^2 + \ldots + \dfrac{1}{2^n}x^n.$ Then $latex f_n$ converges uniformly in $latex C([0,1])$, but its limit is not a polynomial. Let $latex \mathcal H$ be the subspace of $latex C([0,1])$ of functions satisfying $latex f(1-x) = f(x)$ for any $latex x\in[0,1]$ (these are called even function on $latex [0,1]$). Then $latex \mathcal H$ is an infinite dimensional closed subspace of $latex C([0,1])$. Problem 2 Let $latex p$ be a prime number. For $latex r\in\Q$, write $latex r = p^\alpha \dfrac{u}{v}$, where $latex \alpha,u,v\in\Z$ and $latex p$ does not divide neither of $latex u$ nor $latex v$. Define the function $latex |\cdot|_p:\Q\to\Q$ by $latex |r|_p = ...